
2505

Ecology, 86(9), 2005, pp. 2505–2512
q 2005 by the Ecological Society of America

A GENERAL CLASS OF MULTINOMIAL MIXTURE MODELS FOR ANURAN
CALLING SURVEY DATA
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Abstract. We propose a general framework for modeling anuran abundance using data
collected from commonly used calling surveys. The data generated from calling surveys
are indices of calling intensity (vocalization of males) that do not have a precise link to
actual population size and are sensitive to factors that influence anuran behavior. We for-
mulate a model for calling-index data in terms of the maximum potential calling index that
could be observed at a site (the ‘‘latent abundance class’’), given its underlying breeding
population, and we focus attention on estimating the distribution of this latent abundance
class. A critical consideration in estimating the latent structure is imperfect detection, which
causes the observed abundance index to be less than or equal to the latent abundance class.
We specify a multinomial sampling model for the observed abundance index that is con-
ditional on the latent abundance class. Estimation of the latent abundance class distribution
is based on the marginal likelihood of the index data, having integrated over the latent
class distribution. We apply the proposed modeling framework to data collected as part of
the North American Amphibian Monitoring Program (NAAMP).
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INTRODUCTION

In recent years, there has been a dramatic increase
of interest in the status of amphibian populations, ow-
ing to widespread declines in many species, across taxa
(Alford and Richards 1999, Houlahan et al. 2000, Re-
aser 2000). As a result, state and federal agencies and
other organizations have established amphibian mon-
itoring initiatives. These include the Amphibian Re-
search and Monitoring Initiative (ARMI; Hall and
Langtimm 2001) initiated by the U.S. Department of
Interior, and the North American Amphibian Monitor-
ing Program (NAAMP; Weir and Mossman 2005).
NAAMP is perhaps the most geographically extensive
program, focusing primarily on monitoring anuran (i.e.,
frog and toad) populations throughout North America.

Because it is difficult or impossible to count indi-
viduals, most anuran monitoring efforts collect ordinal
data, with levels representing the intensity of vocali-
zation, which are used as an index to population size.
We focus our discussion and model development on
data collected as part of NAAMP, noting that the meth-
ods are easily adapted to other surveys producing or-
dered categorical data. The NAAMP index takes values
y 5 0, 1, 2, 3; indicating no frogs heard (y 5 0);
discrete, nonoverlapping calls (y 5 1); discrete, over-
lapping calls (y 5 2); and a full chorus of continuous,
overlapping calls (y 5 3) (Weir and Mossman 2005).
Many other state and provincial monitoring programs
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use this or similar indices. NAAMP surveys consist of
three visits (temporal replicates) to each of a large num-
ber of sites made over the breeding period of all (vocal)
anurans in the geographic stratum where samples are
located. The data generated from these calling surveys
consist of site-specific index histories, say yi. Typical
data for a single species might therefore be y 5 (0, 2,
0) for three replicate samples at a single site. In this
paper, we develop models for spatially and temporally
replicated calling survey data of this sort.

Ideally, anuran monitoring programs would give ex-
act population sizes; however, this is nearly impossible.
A more reasonable goal, although still fraught with
difficulties, is to produce indices that could be used to
monitor and evaluate temporal patterns of change in
population size. In this regard, there are two important
problems with calling-index data that must be consid-
ered. First, there is not a precise link between calling-
index values and population size. That is, the index
values do not correspond to a well-defined number or
even range of numbers of individuals. This is in con-
trast to simple counts of organisms that can be inter-
preted as realizations of a binomial random variable
and for which various estimators of abundance can be
calculated (e.g., Carroll and Lombard 1985, Royle
2004a). We suggest, however, that the precise relation
between calling-index values and population size need
not be specified for calling-index values to be useful.
Instead, we propose a model for the calling-index data
at a site that is parameterized in terms of the site’s
maximum supportable calling index, a latent feature
clearly associated with population size, and a feature



2506 J. ANDREW ROYLE AND WILLIAM A. LINK Ecology, Vol. 86, No. 9

that is estimable from calling-index data under repli-
cated sampling. This defines a latent class model for
the index data wherein estimation of the latent class
structure becomes the focus of the analysis. The second
problem with calling-index data is that detectability of
anurans varies in response to many factors. Because
the observed index value is based on calling activity
(and not an actual count of frogs capable of calling),
factors that influence anuran calling contribute to var-
iation in detection probability across samples. Such
factors include temperature, time of day, cloud cover,
precipitation, wind conditions, and variation over time
within a season (Bishop et al. 1997, Bridges and Dorcas
2000, Johnson and Batie 2001, Oseen and Wassersug
2002; L. A. Weir, J. A. Royle, P. Nanjappa, and R. E.
Jung, unpublished manuscript). Variation in these fac-
tors across sample sites and visits can induce consid-
erable variation in observed index histories. It is nec-
essary to either control for these factors, or to model
their effects so that objective and meaningful infer-
ences about population status can be made. Our for-
mulation of the model for the observed index data con-
ditioned on the latent class membership of each site
allows for modeling the effect of covariates that influ-
ence detection.

One approach for addressing these two issues more
formally (MacKenzie et al. 2002) is to reduce the data
to ‘‘observed presence/absence’’ (i.e., detection/non-
detection), from which summaries of occurrence that
account for variation in detectability can be estimated.
While appealing for its simplicity, this approach rep-
resents only a crude characterization of the distribution
of abundance across sites and will be insensitive to
changes in abundance, especially for low or high abun-
dance species. Royle (2004b) extended this notion to
a model for the index data by viewing the observed
index values as binomial counts. Although convenient,
the binomial model is an obvious misspecification and
overly restrictive because it is parameterized by a sin-
gle detection probability parameter.

In this paper, we propose a general multinomial sam-
pling model for ordinal categorical calling index data
that are replicated in space and time. In The multino-
mial mixture model, we describe this model that is
based on the view that each sample site possesses a
‘‘latent abundance class,’’ defined as the maximum in-
dex value that the population at that site could generate.
The model consists of a component describing the la-
tent class distribution and a state-dependent multino-
mial sampling distribution for the observed abundance
index data at a site, the parameters of which govern
the conditional distribution of the data given the latent
abundance class. Construction of a large number of
reduced models is possible under an alternative param-
eterization of the model given in Alternative parame-
terization of the conditional sampling distributions. In
Application to anuran calling survey data, we provide
an application of the proposed modeling framework to

data generated from NAAMP. We discuss the results
and some topics of future research in Discussion.

THE MULTINOMIAL MIXTURE MODEL

The sampling design considered here specifies that
R sites are sampled on T occasions during the breeding
season (T may be allowed to vary across sites, and
usually will, but for simplicity, we assume that T is
constant for all sites). Let yit be the observed index
value at site i on sampling occasion t. We assume that
site-specific populations are closed in the sense that the
underlying breeding population is constant for all sam-
pling occasions in the interval t 5 1 to t 5 T.

Possible abundance classes (N) are determined by
the calling-index definition. For the NAAMP index, N
takes on four possible values, N 5 0, 1, 2, 3, defining
possible abundance classes that each site may belong
to but that may not be observed during the sampling
activity at that site. For example, a site with latent
abundance class N 5 3 could yield observed index
values of y 5 0, 1, 2, or 3. A site with N 5 2 could
yield y 5 0, 1, or 2. Let Ni be the true abundance class
at site i. Ni is the maximum index value that could be
observed at site i, given its breeding population. We
refer to Ni as the latent abundance class for site i, and
the probability distribution of N (among sites) as the
latent abundance distribution. Note that this definition
of N is consistent with the interpretation of the maxi-
mum calling index suggested by Knutson et al. (1999)
(this is discussed further in Discussion). The object of
inference is the probability distribution of N given the
calling index histories for a sample of sites (i.e., the
probabilities ck 5 Pr(N 5 k); k 5 0, 1, 2, 3, or various
functions of these latent class probabilities; see Infer-
ence and prediction).

The critical statistical consideration in this problem
is that the latent abundance class for a site may not be
observed due to sampling error. Conditional on the la-
tent abundance class Ni for site i, the observed index
yit is multinomial with Ni 1 1 cells. (recall that Ni 5
0 is a state). Equivalently, we may say that, given Ni

5 k, yit is a multinomial random variable with four
cells and cell probabilities pkj 5 0 if j . k. Conse-
quently, we may specify the sequence of multinomial
sampling distributions conditional on abundance state,
wherein the cell probabilities vary by abundance state
according to

f (y 5 0 z N ) f (y 5 1 z N ) f (y 5 2 z N ) f (y 5 3 z N )


N 5 0 p 0 0 000
N 5 1  p p 0 010 11

N 5 2 p p p 020 21 22
N 5 3 p p p p30 31 32 33

(1)

where pk0 5 1 2 pkj. Thus, pkk is the probability3Sj51

the true abundance state is observed and pkj, j , k, are
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misclassification probabilities. We make the conven-
tional assumption that frogs are not detected where they
do not occur so that p00 5 1. In Alternative parame-
terization of the conditional sampling distributions, we
present an alternative parameterization of these con-
ditional multinomial sampling distributions that yields
a more appealing interpretation of the parameters that
is more amenable to parameterizing covariate effects.

The multinomial mixture model is a hierarchical
model that yields a joint likelihood for {pjk} and Ni of
the form [y z N][N] where [y z N] is the multinomial sam-
pling distribution conditional on latent abundance, and
[N] is the multinomial ‘‘prior’’ distribution of latent
abundance. By introducing prior distributions on the
remaining parameters, one could jointly estimate the
collection of latent abundances, and all model param-
eters, from the posterior distribution which could be
analyzed using Markov chain Monte Carlo (MCMC)
methods. However, our main interest is in estimating
model parameters (principally the latent abundance
probabilities {ck}), and not the site-specific abundance
states. Consequently, we next consider analysis of the
marginal likelihood of y, having removed the latent
abundance ‘‘random effects’’ by integration.

Focusing on this estimation problem does not pre-
clude estimation of particular values of N (i.e., for a
site; we consider frequentist prediction of site-specific
latent abundance in Inference and prediction). How-
ever, for most ecological problems (monitoring pro-
grams in particular) that involve sampling large num-
bers of local populations, interest is primarily focused
on structure describing this collection of local popu-
lations (i.e., what is usually referred to as the ‘‘meta-
population’’). In the present case, the metapopulation
structure is governed by the ck parameters.

The marginal likelihood

If the set {Ni; i 5 1, 2, . . . } were known, it would
be easy to estimate the detection parameters {pkj}.
However, the abundance states are unknown, so the
correct site-specific multinomial sampling distribution
(which is conditional on N) is not known precisely.
Consequently, neither the abundance state probabilities
nor the cell probabilities can be estimated simply by
tabulating observed index values. Therefore, we focus
attention on the integrated likelihood in which each Ni is
removed from the conditional multinomial sampling dis-
tribution by integration. The integrated likelihood is

R 3 T

L(p, c z y) 5 f (y z N 5 k, p ) c (2)P O P it i k k5 6[ ]i51 k50 t51

where f(y z N, p) are specified by Eq. 1, pk is the kth
row of Eq. 1, and {ck; k 5 0, 1, 2, 3} are the latent
abundance class probabilities.

Eq. 2 can be maximized numerically in order to ob-
tain the MLEs of c and the detection parameters p. We
note that this model may be generalized to enable the

detection parameters, pkj, to depend on time or covar-
iate effects. We consider such generalizations in Al-
ternative parameterization of the conditional sampling
distributions.

Inference and prediction

We believe that, for most purposes, interest will fo-
cus primarily on the latent abundance class distribution
{ck: k 5 0, 1, 2, 3}, which is, in effect, a multivariate
index to the metapopulation demographic state. That
is, the latent abundance class distribution describes the
proportion of sites within the sampling frame that are
occupied by populations capable of generating index
values of 0, 1, 2, or 3. However, several useful (uni-
variate) summaries can be computed from the estimated
latent class frequencies. For example, one index that
has become very common in many ecological appli-
cations is the proportion of sites occupied (‘‘site oc-
cupancy’’). This is just 1 2 c0. Another possible uni-
variate summary is the average latent abundance class,
N̄ 5 E[N] 5 kck. These are estimated as 1 2 0

3S ĉk50

and k k, respectively.3S ĉk50

To obtain variance estimates of these quantities, note
that there are K 2 1 free abundance-class parameters
because of the unit sum constraint on ck, and obtain
the asymptotic variance–covariance matrix for basedĉ
on the inverse of the Fisher information evaluated at
the MLEs, say,

21ˆ ̂S 5 Var[(ĉ , ĉ , ĉ )9] 5 I (ĉ)0 1 2

which is evaluated numerically (e.g., the nlm routine
in the popular free statistical software R).

For the univariate summaries, note that Var( 0) isĉ
the first diagonal element of . To obtain a varianceŜ

estimate of we note that N̄ can be expressed as¯̂N

N̄ 5 3 2 3c 2 2c 2 c0 1 2

and hence ( ) 5 a9 a where a 5 (3, 2, 1).̂ ˆ¯̂Var N S
In the application to be described in Application to

anuran calling survey data, the model is parameterized
in terms of the multinomial logit of the ck parameters.
In this case, application of the delta method is neces-
sary to obtain variance estimates of either the ck pa-
rameters or the univariate summaries.

Although the collection of Ni’s has been removed
from the likelihood (by integration) to focus estimation
on the structural parameters of the prior distribution,
it is possible to estimate individual values of Ni if nec-
essary. For this purpose, we adopt the conventional
estimated best unbiased predictor (EBUP) which in the
present case is

3

N̂ 5 E(N z y , û) 5 kg (k)Oi i i i
k50

where { i; k 5 0, 1, 2, 3} is the value of gi(k) 5 Pr(Niĝ
5 k z yi, u), evaluated at u 5 . Here u indicates theû
collection of all model parameters p 5 , and3{p }kj j#k50
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c 5 (c0, c1, c2, c3). Also, is an estimate of u. Theû
probabilities for sample location i, , can be3{g (k)}i k50

computed for any index history given (estimates of)
the model parameters, p and c. In particular,

Pr(N 5 k z y , u) } Pr(y z N , p)Pr(N 5 k).i i i i i

The probabilities constitute an estimate of3{g (k)}i k50

the posterior predictive distribution of Ni and thus may
be used for many standard inference problems regard-
ing Ni, such as point estimation or assessment of un-
certainty.

We note that this approach to inference about specific
values of the latent abundance class is essentially an
empirical Bayes procedure where parameters have been
estimated from the marginal likelihood (i.e., having
removed the ‘‘random effects’’ by integration) and then
used to calculate the conditional posterior of the quan-
tity of interest. We believe that if management interest
really were focused on the latent abundance class for
a specific site, or complicated functions thereof, one
might be better served by adopting a fully Bayesian
analysis of the proposed model to more adequately
characterize uncertainty due to having estimated the
(prior) parameters governing the latent abundance class
distribution.

ALTERNATIVE PARAMETERIZATION OF THE

CONDITIONAL SAMPLING DISTRIBUTIONS

The fully parameterized model described in The mul-
tinomial mixture model contains nine parameters (six
p’s and three c’s). While the parameters of the full
model are all identifiable, this model may be an un-
necessarily complex description of the detection pro-
cess. Thus, it may be advantageous to consider more
parsimonious models for the conditional multinomial
sampling distribution. However, under the parameter-
ization given in The multinomial mixture model, it is
not at all clear how to define meaningful constraints
among the various detection parameters (the p’s of Eq.
1). In addition, there is not a clear and concise param-
eterization of covariate effects that might influence de-
tection.

To address these issues, we consider the following
reparameterization of the multinomial sampling distri-
butions that yields a natural set of reduced submodels
and is more amenable to modeling covariate effects:

f (y 5 0 z N ) f (y 5 1 z N ) f (y 5 2 z N ) f (y 5 3 z N )


N 5 0 1 0 0 0
N 5 1  q p 0 01 1

N 5 2 (1 2 b )q b q p 021 2 21 2 2
N 5 3 (1 2 b )(1 2 b )q b (1 2 b )q b q p31 32 3 31 32 3 32 3 3

(3)

where qk 5 (1 2 pk). The interpretation of these pa-
rameters is straightforward. Parameters {pk; k 5 1, 2,
3} are ‘‘correct classification’’ probabilities (i.e., the

probability of correctly observing the true abundance
class during a sample). Parameters {bkj} are conditional
‘‘misclassification’’ probabilities: b21 is the probability
of observing a calling intensity of y 5 1 given that N
5 2 and y # 1, b32 is the probability of observing y 5
2 given that N 5 3 and y # 2, and b31 is the probability
of observing y 5 1 given N 5 3 and y # 1.

This parameterization provides a concise description
of the various submodels. For example, one might con-
sider the submodel that assumes p1 5 p2 5 p3, or the
various submodels in which only two of the p’s are
constrained, e.g., p1 5 p2. Similar constraints can be
considered for the b parameters. We do not consider
constraints that equate p’s to b’s because these param-
eters have qualitatively different interpretations. In all,
there are 25 possible submodels including the full mod-
el containing six parameters.

To keep track of these 25 possible models, it is useful
to index them using a parameter index vector that de-
scribes the imposed constraints. For example, the mod-
el in which p1 5 p2, with p3 and all b parameters un-
constrained has five parameters, and is indicated by the
vector (1, 1, 2, 3, 4, 5) with entries indexing constraints
among (p1, p2, p3, b21, b31, b32). The model with all p’s
equal and all b’s equal has two parameters and is de-
noted by (1, 1, 1, 2, 2, 2). Formally, this vector is just
a compact representation of a set of linear constraints
among the six detection parameters. Under the full
model, denote the (6 3 1) parameter vector by u. De-
note the (m 3 1, m , 6) reduced parameter vector as
v. Then, the linear constraint can be expressed as u 5
Hv for some (6 3 m) matrix H with entry (i, j) equal
to 1 if the ith element of u is equal to the jth element
of v and 0 otherwise. The parameter index vector (1,
1, 1, 2, 2, 2) implies that H is 6 3 2 with 1 in the first
three rows of column 1 and in the last three rows of
column 2.

Modeling covariate effects on the detection process

In many applications, information on one or more
covariates that affect the detection of frogs will be
collected. For example, ambient temperature is col-
lected during many anuran surveys (including
NAAMP). Because calling activity of frogs is affected
by temperature (Johnson and Batie 2001), it is impor-
tant to accommodate this information in the detection
probability parameters. Also, variation in detection
probability over time may occur as a result of envi-
ronmental conditions that are not quantified. Because
there may be as many as six detection probability pa-
rameters, there are many ways of parameterizing co-
variate effects. It would be possible to parameterize the
covariate effects on all of the parameters (the p’s and
b’s), but this model becomes unwieldy.

Alternatively, a sensible and concise approach is to
model covariates as having additive effects on the log-
its of p1, p2, and p3 but not on the b parameters. Thus,
it is assumed that the effect of covariates on pkj (Eq.
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TABLE 1. Summary of models fit to green frog data.

Model index vector

p1 p2 p3 b21 b31 b32 np AIC ĉ0 ĉ1 ĉ2 ĉ3 b̂1 b̂3

1 2 2 3 3 3 8 605.69 0.47 0.33 0.15 0.04 23.48 2.59
1 2 2 3 3 4 9 606.06 0.47 0.33 0.15 0.05 23.73 2.62
1 2 2 3 4 4 9 607.07 0.47 0.33 0.15 0.05 23.85 2.63
1 2 1 3 3 3 8 607.10 0.45 0.36 0.16 0.03 23.54 2.42
1 1 1 2 2 2 7 607.19 0.42 0.42 0.13 0.04 23.29 2.15
1 1 1 2 2 3 6 712.04 0.12 0.19 0.55 0.14

Notes: Rows 1–5 are the top five models (by Akaike’s Information Criteria [AIC]) containing time effects (parameters b1

and b3) in detection probability. Row 6 is the best model without time effects. An empty cell indicates that the model does
not contain that parameter; np 5 number of model parameters.

1) is solely through the p’s. So, for example, any effect
on p3 has the opposite effect on the marginal detection
probability p32 5 Pr(y 5 2 z N 5 3). That is, since Pr(y
5 2 z N 5 3) 5 p32(1 2 p3), a factor that has a positive
influence on p3 must have a negative influence on the
marginal probability of observing y 5 2 given that N
5 3.

Let { ; k 5 1,2,3} be the correct classification prob-itpk

ability for site i during sample t given that Ni 5 k, itpk

5 Pr(yit 5 k z Ni 5 k). We consider additive models of
the form

L
itlogit(p ) 5 a 1 b x (4)Ok k l l,it

l21

where {xl,it; l 5 1, 2, . . . , L} is the value of the lth
covariate for observation it. The indices of the param-
eter index vector described in Alternative parameter-
ization of the conditional sampling distributions now
index the ak parameters instead of pk. For each of those
25 models, the lth covariate may be included in the
model, or not, so that there are 25 3 2L possible models
with L covariates.

APPLICATION TO ANURAN CALLING SURVEY DATA

Here, we consider data collected in Maryland during
2001 by the North American Amphibian Monitoring
Program (NAAMP). The NAAMP is a roadside survey
modeled after the North American Breeding Bird Sur-
vey (BBS; Robbins et al. 1986). Sample sites consist
of roadside ‘‘stops’’ near wetlands where observers re-
cord the calling index of every species detected. A
detailed description of the protocol is given by Weir
and Mossman (2005). Some relevant discussion of pro-
tocol and implementation for specific programs can be
found in Shirose et al. (1997), Crouch and Paton
(2002), and Genet and Sargent (2003).

Data analyzed here are index values of green frog
(Rana clamitans) calling activity recorded at 220
NAAMP sample locations. These data and a computer
program to fit the multinomial mixture models have
been provided in the Supplement. The three NAAMP
samples were collected during well-defined NAAMP
sampling ‘‘windows’’ designed to detect all species
(Weir and Mossman 2005). Green frogs breed later in

the season than many species; in Maryland, their peak
breeding activity (and hence, greatest vocalization) oc-
curs during the third sampling window (1–30 June).
Because of this, we might expect temporal variation in
detection probability to be an important source of var-
iation in the observed index data. We therefore con-
sidered a model in which detection probability varied
among the three sample periods by parameterizing tem-
poral variation as an additive effect on the logit scale.
That is,

i1logit(p ) 5 a 1 bk k 1

i2logit(p ) 5 ak k

i3logit(p ) 5 a 1 b (5)k k 3

where {pk,it; k 5 1, 2, 3} are described in Modeling
covariate effects on the detection process.

We fit the suite of 25 detection probability models
representing constraints among the various detection
parameters (described in Alternative parameterization
of the conditional sampling distributions) to the green
frog data twice: once with and once without time ef-
fects. The five models having the best (i.e., smallest)
Akaike Information Criterion score (AIC; Burnham and
Anderson 1998) are given in Table 1 (first five rows).
Note that all of these top models contain temporal var-
iation in detection probability. For comparison, the best
model without temporal variation in detection proba-
bility is also given (row 6). The AIC of this model was
higher than all 25 of those models that allowed for
temporal variation.

Among those models with time effects, there is little
difference in the estimated latent abundance distribu-
tion. From these results, it is estimated that approxi-
mately 47% of sites are ‘‘unoccupied’’ by green frogs,
4% have abundance levels capable of generating an
index value of y 5 3, and the remaining 48% are of
intermediate levels of abundance (33% have N 5 1 and
15% have N 5 2). To give some context to these es-
timates, we note that the observed frequency (propor-
tion) of maximum index values at the 220 sites were
134 (0.609), 62 (0.282), 19 (0.086), and 5 (0.023) for
maxt(yit) 5 0, 1, 2, 3, respectively. Thus, the effect of
accounting for detectability adjusts the abundance dis-
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TABLE 2. Summary of models considering temperature effects fit to green frog data.

Model index vector

p1 p2 p3 b21 b31 b32 np AIC ĉ0 ĉ1 ĉ2 ĉ3 b̂1 b̂3 ĉ1 ĉ2

1 2 2 3 3 3 9 591.95 0.47 0.33 0.15 0.04 22.42 2.04 0.13
1 2 2 3 3 4 10 592.45 0.47 0.33 0.15 0.05 22.46 2.08 0.12

1 2 2 3 3 3 10 592.56 0.47 0.33 0.16 0.04 22.20 2.13 0.20 20.01
1 2 2 3 3 4 11 592.80 0.48 0.32 0.16 0.05 23.74 2.17 0.24 20.02

1 2 2 3 3 3 8 595.27 0.46 0.33 0.16 0.05 23.47 2.58
1 2 2 3 3 4 9 595.56 0.46 0.33 0.16 0.05 23.74 2.61

1 2 2 3 3 3 8 617.96 0.38 0.40 0.16 0.05 0.34 20.01
1 1 1 2 2 2 7 617.97 0.34 0.47 0.14 0.04 0.32 20.01

1 2 2 3 3 3 7 618.46 0.40 0.39 0.16 0.05 0.28
1 1 1 2 2 2 6 618.69 0.37 0.45 0.13 0.04 0.26

Notes: The best two models (by AIC) for each possible set of effects are given; model sets are separated by blank rows.
An empty cell indicates that the model does not contain that parameter; np 5 number of model parameters.

tribution upward a moderate amount, as expected, to
reflect that green frogs likely occur at some sites where
non-detection occurred, and occur at higher levels of
abundance than observed at other sites.

Note that the estimated time effects (b̂1 and b̂3 in
Table 1) (parameterized as differences from period 2
detection) indicate that detection probability increases
from period 1 to period 3, consistent with the notion
that green frog breeding activity occurs later in the
season. There is a large difference in estimated latent
abundance distribution when the time effects are omit-
ted from the model (i.e., compare row 6 to rows 1–5
of Table 1), suggesting the importance of properly mod-
eling the detection process. The model without time
effects understates detection probabilities, and, hence,
overstates abundance levels.

Fitted values of the multinomial cell probabilities
(Eq. 1), conditional on N, were calculated under the
best model (row 1 in Table 1) where p2 5 p3 and b21 5
b31 5 b32. Estimated cell probabilities for period 2 (the
baseline period, containing a zero time effect) are

f (y 5 0 z N ) f (y 5 1 z N ) f (y 5 2 z N ) f (y 5 3 z N )


N 5 0 1.000 0 0 0
N 5 1  0.758 0.242 0 0

N 5 2 0.772 0.149 0.078 0
N 5 3 0.647 0.125 0.149 0.078

We note a high probability of observing zero under any
abundance state and considerably higher probability of cor-
rectly detecting N 5 1 than either of N 5 2 or N 5 3.

Detection response to temperature

Finally, we considered the addition of temperature
as a covariate effect on detection probability. We con-
sidered linear and quadratic temperature effects as ad-
ditive effects in Eq. 5, yielding models of the form

i1 2logit(p ) 5 a 1 b 1 c temp 1 c tempk k 1 1 i1 2 i1

i2 2logit(p ) 5 a 1 0 1 c temp 1 c tempk k 1 i2 2 i2

i3 2logit(p ) 5 a 1 b 1 c temp 1 c temp (6)k k 3 1 i3 2 i3

where ‘‘tempit’’ is the observed temperature at site i
during sample t. Note that we have deviated somewhat
from the generic representation for the model presented
in Eq. 4 so as to distinguish time effects (parameters
b1 and b3) from temperature effects (c1 and c2). For
these analyses, we omitted eight observations with
missing temperature data; for the purposes of compar-
ison, we refit the best models of Table 1 using the
modified data set (using the reduced data set, the AIC
scores were 595.27 and 595.56 for the best two models
summarized in Table 1). Because temporal variation
may be an artifact of seasonal variation in temperature,
we considered models with temperature, but without
time effects. This yields the following five model sets
(containing 25 models each) varying by covariate ef-
fects included in the model:

1) time effects only (i.e., Table 1);
2) temperature (linear), no time effects;
3) temperature (linear, quadratic), no time effects;
4) time 1 temperature (linear);
5) time 1 temperature (linear, quadratic).

The results for the top two models for each set (based
on AIC) are summarized in Table 2. Each pair of rows
(separated by a horizontal line) pertains to a particular
model set that can be deduced by the presence or ab-
sence of a particular parameter estimate. Row pairs are
ordered by AIC of the best model within the class.
Thus, we see that the model containing time effects
and a linear temperature effect (rows 1 and 2 in Table
2) is favored over the other models, but just slightly
over the model with time and a quadratic temperature
effect (rows 3 and 4 in Table 2). Note (column ĉ1 in
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Table 2) that the positive (linear) temperature effect
indicates increasing detection probability with tem-
perature and the negative quadratic indicates that de-
tection probability is concave, obtaining a maximum
detection probability at 17.3 (8C) for the best model in
that set. Note also that rows 5 and 6 in Table 2 are the
best two models in Table 1, with slight differences
reflecting that eight observations without temperature
data have been omitted.

Inclusion of a temperature effect in the model does
moderate the time effects to some extent (reducing their
magnitude), suggesting that some of the temporal var-
iation in detectability is due to temperature. Finally,
the estimated abundance-class frequencies differ very
little among these models, even for models that contain
a temperature effect, but no time effect. Under the best
model in Table 2, we computed the two univariate sum-
maries of the latent class distribution described in In-
ference and prediction. The estimated probability of
occurrence (i.e., Pr[N . 0]) under this model is 1 2

0 5 0.53 (SE 5 0.0433). The estimated mean latentĉ
class is 5 0.77 (SE 5 0.074).¯̂N

DISCUSSION

Despite the prevalence of monitoring programs for
amphibians, and anurans in particular, there has been
little development of statistical models that account for
imperfect detection in calling surveys. Models for es-
timating ‘‘site occupancy’’ (probability of occurrence)
based on observed presence/absence (e.g., MacKenzie
et al. 2002) enable formal modeling of detection prob-
ability. However, that approach enables only a crude
characterization of abundance state by classifying sites
as being either occupied or unoccupied. Changes in
anuran abundance can go undetected when abundance
index data are reduced to simple detection/nondetec-
tion; a two-state population description (occupied or
unoccupied) is not sensitive to underlying population
shifts that may not affect site occupancy but that may
be important for conservation or management objec-
tives.

Here, we have developed a general model where the
sampling distribution of the observed index data for a
site is defined conditional on the ‘‘latent abundance
class’’ for that site. The model allows this latent abun-
dance class to be unobserved due to sampling error.
Importantly, the model enables a multinomial summary
of the observed index data to be obtained (from which
various univariate summaries may be obtained, includ-
ing probability of occurrence). The latent abundance
class is interpreted according to the maximum index
value that the population at a given site could generate.
For example, a site has an abundance class of N 5 3
if it contains a population capable of yielding an index
value of y 5 3. The proposed framework enables the
construction of very general models of the detection
process and yields estimates of the underlying latent
abundance class distribution that are adjusted for sam-

pling conditions that can vary spatially, temporally, and
as a function of many controllable and uncontrollable
factors.

Although our definition of abundance class is not
precisely linked to population size, it is easily inter-
pretable in terms of the calling index and in the context
of the sampling process that generated the data. Our
definition of abundance class also is consistent with
contemporary notions of characterizing metapopula-
tion structure (e.g., ‘‘site occupancy’’). And, the inter-
pretation of the latent abundance class is consistent
with the interpretation of the maximum calling index
(at a site) forwarded by Knutson et al. (1999). They
provide an analysis of similar data but reduced the
observed index data to the maximum observed index
value at that site arguing that: ‘‘The maximum value
represents the highest population level an individual
survey location could produce for a given species—
the wetland at its best.’’ (Knutson et al. 1999:1439)
However, they do not account for the possibility that
this maximum attainable index value may not have
been observed during sampling.

As with any animal monitoring program, there is
some debate over the best way in which to collect abun-
dance information, and there is debate about the utility
of information provided by anuran surveys based on
calling indices. However, sampling based on calling
surveys is the only practical method for monitoring
anurans over large scales. We note that we are not
advocates of calling indices to the exclusion of other
types of data, and our model does not impose a precise
link between observed calling indices and actual abun-
dance. While several studies have asserted a linkage
between calling indices and abundance (Mossman et
al. 1998, Knutson et al. 1999, Stevens et al. 2002), to
our knowledge, the only published study that evaluates
this linkage directly is Shirose et al. (1997). They noted
a significant linear relationship between number of in-
dividuals perceived to be calling and the number of
individuals captured using intensive survey techniques
for several species. Although they attempted to count
the number of unique vocalizing individuals, the cat-
egorical index collected by most anuran monitoring
programs represents a coarse summary of such counts.
The relationship between calling intensity and abun-
dance is a topic of some importance that will undoubt-
edly be the focus of future research.

We applied the proposed model to green frog index
data collected in 2001 on NAAMP routes in Maryland.
We propose the estimated latent abundance distribution
for monitoring and assessment purposes because it
yields a summary metric that is adjusted for variation
in detection probability induced by variation in factors
which influence the detectability of anurans (e.g., tem-
perature). The estimated abundance distribution was
shifted upwards from the observed calling index fre-
quencies to reflect the indicated structure in detection
probability. Since factors that influence detectability
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will vary spatially, temporally, and in response to en-
vironmental conditions, it is necessary to account for
detectability in order to properly partition spatial and
temporal variation in the observed data into variation
due to ecological processes of interest (i.e., abundance)
and variation due to sampling processes.
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SUPPLEMENT

Data and computer programs for fitting multinomial mixture models used in the main article are available in ESA’s Electronic
Data Archive: Ecological Archives E086-132-S1.


